Package Management Security

Justin Cappos, Justin Samuel, Scott Baker, John H. Hartman
University of Arizona
Computer Science Department
{justin, jsamuel, bakers, j}i@cs.arizona.edu

Abstract

Package management is the task of determining which paslsigrild be installed on a host and
then downloading and installing those packages. This payemines the popular package managers
APT and YUM and presents nine feasible attacks on them. Taereattacks that install malicious
packages, deny users package updates, or cause the haassho This work identifies three rules of
package management security: don’t trust the repositbeytrusted entity with the most information
should be the one who signs, and don't install untrusted goge& The violation of these rules leads
to the described vulnerabilities. Unfortunately, manytad flaws are architectural in nature, so repair
requires more than patches to APT and YUM.

While the rules of package management security argue tbatdbign of existing package managers
is insufficient, they do not prescribe how to provide segurithis led to the development of three de-
sign principles for building a secure package managercgedetrust delegation, customized repository
views, and explicitly treating the repository as untrusfBaese principles were used to construct a pack-
age manager Stork which is not vulnerable to the attackdifazhfor YUM and APT. Stork has been
in use for four years and has managed over half a million iien

1 Introduction

Package managers are a popular way to distribute softwaredlgd into archives called packages) for
modern operating systems [4, 11, 37]. Package managerslpra\privileged, central mechanism for the
management of software on a computer system. As many packagenstalled in the root context of the
operating system, package management security is edgeritia overall security of the computer system.

This paper evaluates the security of the popular packagegeas YUM [47] and APT [2]. This work
describes a set of possible attacks and discusses thabiligagiven the resources the attacker requires to
be able to launch the attack.

One reason for the vulnerability to attack is that there ahelient problems with how cryptographic
signatures are handled. Signatures in existing packageafsrequire the package to be downloaded before
it can be verified. As a result, package metadata (informadtwout the package used to determine what is
installed) is not verified using the package signature. tirggpackage signatures is typically a very coarse-
grained operation where a developer’s key is either trustewt, leading to escalation of privilege attacks.
If a developer’s key is compromised, then key revocatioroishandled well by APT and YUM, leading to
an inability to mitigate damaged caused by the compromisgd k

In addition, there are implicit trust assumptions that AR & UM make when interacting with the
repository. Unfortunately, many of these assumptionsarada attacker to be trusted if they can intercept
and alter traffic to and from the repository.

This leads to vulnerabilities that can be exploited to penf@scalation of privilege attacks, prevent
clients from getting security updates, and exhaust ressusa clients (commonly causing mail delivery to

stop, databases to be corrupted, and logging to fail). Wnfately, fixing many of these problems requires
fundamental changes in the security architectures of ARITYAM.

This work identifies three rules that are violated by APT andivvwhich result in security vulnerabili-
ties.

Don't trust the repository There are two components to this rule. First, verify that¢bmmunication
with the repository correctly follows the protocol. Secomdrify that the data returned from the repository
is correct and current.

The trusted entity with the most information should be the who signs Packages (and metadata)
should be signed by the entity with the most knowledge of tita.dThis specifically argues against a party
signing something simply because another party has signeda popular practice in many distributions
today [11]. This also implies that package metadata shogllsigned by developers instead of repositories
(since the repository has no idea if the package metadatarisot).

Don't install untrusted packaged here must be a secure method for deciding what packagegidie
installed as well as verifying that the obtained packagescarrectly signed. Selectivity is important for
both of these — an authority should only be trusted for a paldr set of packages. This rule also implies
that users must get what they intend and should not be able presented with out of date or alternative
packages they do not want. Packages signed by keys knowrctinfggromised must not be installed.

The three rules of package management security describesivbiald not be allowed in order to retain
security. However, they do not describe how the necessanyrise mechanisms should be provided. To
that end, three design principles for security in packageagament were developed for the construction of
Stork. These principles are selective trust delegatiostotnized repository views, and explicitly treating
the repository as untrusted.

Using selective trust delegation, users can trust anotber (guch as a developer) to know the valid-
ity of a limited subset of packages. In addition, selectiusttdelegation can be used to prevent exposing
project keys to individual developers. It also provides &urel mechanism for key revocation. Having
customized repository views means that each user “seedfeaetit repository, which is actually an amal-
gamation of their trusted packages on all repositories #ineyusing. Customized repository views prevent
malicious repositories or user-uploaded packages fronpoomising the security of users. If the repository
is treated as an untrusted entity, then even a root and @tkest compromise of a package repository does
not compromise the security of users.

This paper presents the design of a package manager Stoffoltbars these design principles. Stork
also obeys the rules of package management security antvalnerable to the attacks on YUM and APT.
Stork has been in use for 4 years and has managed over halfamlients.

This work makes several contributions:

e Nine attacks on APT and YUM are identified. These reason thelks are effective is traced back to
violations of three rules of security in package management

e Package managers that ignore these rules are vulnerabiie torte attacks described in Section 3.
The feasibility (Section 3.1) and effects (Section 3.2)ttdeks that exploit these vulnerabilities, the
rules violated that lead to the flaws (Section 3.3), and thergial for repairing YUM and APT
(Section 3.4) are described.

¢ While some of the attacks may be mitigated by straightfodwapairs to APT and YUM, other attacks
are not preventable because the security architecture$®fakd YUM are fundamentally broken.
To identify how to build a security architecture with the ftionality needed to retain security, three
principles for package management security are describectibn 4).

e These principles are followed in the design of a secure garkaanager Stork. The architecture of
Stork is described in Section 5.1. A discussion which dbssrhow Stork mitigates the effectiveness
of the previously discussed vulnerabilities follows in G&t5.2.

2 Background

This section provides background information about paekagnagers which is important in order to bet-
ter understand potential vulnerabilities. Most packageagars can be split into two basic components: a
package installer and a dependency resolver. A packagalémgs a low-level component that uses special
files (called packages) to manage the software installedrwda. A dependency resolver is a high-level
component that handles communication with external seyet host packages (called package reposito-
ries) as well as dependency resolution.

Before individual package managers are looked at in detad,section also provides some statistics
on which package managers are popular. Popularity is impbbiecause the more popular software is, the
more systems will be compromised if a vulnerability exists.

According to DistroWatch [13] and Netcraft [29], distribrts that use the DEB and RPM file formats
are overwhelmingly the most popular. As a result, theiregponding package installers DPKG and RPM
are also popular. With regard to dependency resolvers,eoddbktop APT/APT-RPM (45.2%) is clearly the
most popular, with YUM (6.2%), Portage (6.9%), and YaST 7%) all having significant market share [13].
For servers, YUM (52%) is the clear leader with APT (25%) diswing strong market share [29]. Since
APT/DPKG and YUM/RPM are the most popular package managjess, security is the most important.
As a result this paper focuses on APT/DPKG and YUM/RPM.

2.1 Package Formats

Packages consist of an archive containing files and, in tbe cBRPM and DEB, additional metadata. For
a given package, the additional metadata contains infeemabout the other packages it needs to be able
to operate (thélependencigsfunctionality the package possesses (what the pagkagéled, and various
other information about the package itself.

In the RPM format there is space for one signature. DEB pakagve no standard field for signatures
(and DEB files are not usually signed) but extensions exasssipport signatures [12, 15].

2.2 Package Installers

The package installer is normally tied to a specific packagmét. The role of the package installer is to
unpack the files from the package to the appropriate locatiack installed packages, and remove or update
packages. The package installer keeps a database thattesdighich packages are installed. Most pack-
age installers also provide a signature verification meshano detect package tampering or corruption.
There is typically only one package installer per compuystesn and it is normally standardized for the
distribution.

RPM [34] is both the name for a package installer and the foohthe package files that the package
installer uses. The package installer is command line drarel is “capable of installing, uninstalling, veri-
fying, querying, and updating computer software packaf@’ While RPM is sometimes used standalone,
itis common to run a dependency resolver like APT-RPM or YUMap of RPM.

DEB packages are used by a package installer called DPKG [MPKG performs similar actions
as the RPM package installer, allowing the installationnstallation, and querying of computer software
packages. There are subtle differences between DPKG and [BRBEMbut they are interesting primarily
from a functionality and ease of use standpoint rather thegcarity standpoint.

3

2.3 Dependency Resolvers

The dependency resolver gathers information about paskagmlable on package repositories. Almost
all dependency resolvers automatically download reqdessekages as well as any additional packages
that are needed to correctly install the software (hencen#iree “dependency resolver”). For example,
a requested packadeoo may depend ohi bc andbar. If Ii bc is already installed, thehi bc is a
dependency that has been resolved (so no package needsdddukfar this dependency). If there is no
installed package that providésr , thenbar is anunresolved dependenand a package thgrovides
bar must be installed beforeoo may be installed. The dependency resolver may be able ttel@ca
package that providdsar on a repository. Note that this does not need to be a packdbeheginameéoar .

A package may provideirtual dependenciesf another name. This is useful if a package needs a program
that provides some functionality but it doesn’t matter wigt program is (such as an email client or web
browser).

The packages that are chosen to fulfill dependencies mayuraesolved dependencies of their own.
Packages are continually added to the list of packages twskadled until either the package manager cannot
resolve a dependency (and produces an error) or all depeiedeare resolved.

The actual installation is done by the dependency resol#ing the package installer. It is common
for multiple dependency resolvers [3, 39, 41, 47] to suppasingle lower-level package installer (RPM)
and for different users of the same distribution to use dhfie dependency resolvers.

One popular dependency resolver is APT. APT is a dependezsojver originally created to use the
package installer DPKG in Debian. However, APT has also Ipeeted to use other package installers, in-
cluding RPM [3] (where itis named APT-RPM). APT automatesrigtrieval, configuration, and installation
of software by resolving dependencies and handles comiatimricwith repositories. To address security
concerns with APT (particularly with signatures), the seeAPT project [36] was created. Recent versions
of APT use the changes added for secure-APT. This work fecosdhe newer versions of APT with the
secure-APT changes and ignores older versions since teégnawn to be insecure.

Another popular dependency resolver is YUM [47]. YUM is usednstall and remove packages on
systems with RPM package installers. YUM performs autorndéipendency resolution and repository
communication.

YUM and APT both have auto-update mechanisms availabld@mnt When enabled, these auto-update
mechanisms will upgrade older versions of installed paekagith newer versions of the packages as they
become available, typically within 1 day of the new packdgeisg added.

2.4 Package Repository

Package repositories are usually just web servers usedtidprpackages and package metadata. The
package metadata is the metadata in the package format istégtracted and stored separately. Often the
metadata for all packages is put into a single tarball.

Package repositories store packages, package metadatheaoot metadatdile. The root metadata
file is called different things in APTRel ease) and YUM (r epond. xnl) but the contents are similar.
The root metadata provides the location and secure hashies @frballs that contain the package metadata.

It is common for repositories to consist of multiple servéirat host the same data. These additional
servers are called mirrors and are used to offload traffic fremmain repository. They typically contain the
exact same content as the main repository and are updated yizgc or a similar tool.

2.5 Security Philosophy

APT and YUM use different techniques to provide security. TABcuses on securing the repository meta-
data rather than signing packages. An APT repository oglipprovides a signature for theel ease file

4

[Attack Name | Description | Requirement| Result Rule |

Slow Retrieval | An attacker slows repository communication so that packageagers will “hang”| Repository DoS (1)
and will not error out or contact other repositories to estei package updates.

Endless Data | A malicious repository (or MITM) returns an endless stredndata in response tq Repository DoS / Crash 1)
any file request.

Replay Old | An attacker provides old metadata that is correctly sigmeth@@ps to prevent new Repository Outdated (1)

Metadata packages from being considered). Package

Extraneous An attacker changes the metadata for a package to indicdépénds on a package Metadata Any Signed | (2)

Dependency or packages of the attacker’s choice. Key Package

Depends on| An attacker changes the metadata for a package to indicd¢pénds on everything. Metadata DoS / Crash (2)

Everything Key

Unsatisfiable An attacker causes a package manager to ignore valid packagause forged metd- Metadata DoS / Out-| (2)

Dependencies | data indicates unsatisfiable dependencies. Key dated Package

Provides An attacker changes the metadata for a package to indicpteviides any depeni Metadata Any Signed | (2)

Everything dency the user requests. Key Package

Use Revoked| An attacker uses a revoked key to get users to install paskage Revoked Key | Arbitrary ?3)

Keys Package

Escalation of| An attacker compromises a key trusted for signing a speaifiogof packages and Package Key| Arbitrary 3

Privilege then gets users to accept signed malicious versions of pttuages. Package

Figure 1. This figure lists attacks, the requirements of tite@cker, the result of a successful attack, and
which security rule the developer violated. Revoked kegcddd can work for either repository root metadata
keys or package signing keys. The security rules are nurdi§g@jdon’t trust the repository (2) The trusted
entity with the most information should be the one who si@))on't install untrusted packages. Package
metadata implies the ability to change the package met#taitaser receives when polling a repository.

(root metadata) in a file calldgel ease. gpg. This allows APT to verify that th&®el ease file is signed

by the repository key and therefore came from the reposifidngRel ease file contains the secure hashes
of the package metadata on the repository. The package atetedintains secure hashes of the packages
themselves.

Instead of signing the repository metadata, YUM uses sigaaton packages to provide security. A
YUM distribution maintainer signs all of the packages ontygository. YUM verifies package signatures
after downloading packages.

In order to verify the identity of the repository, YUM uses HFS in Red Hat Enterprise Linux. Other
distributions that use APT and YUM do not support HTTPS orir theblicly available mirrors.

3 \Wulnerabilities

This section introduces nine attacks that APT and YUM areendble to. A summary of all of the attacks
that will be discussed, the attacker’s requirements todauhe attack, the result of the attack, and the rule
for package management security that the package manadgged is listed in Figure 1.

There are four questions this section tries to answer:

1. Is it possible for attackers to obtain the necessary remugnts to launch these attacks? (Section 3.1)
2. Do these attacks work on APT and YUM? (Section 3.2)
3. How could these attacks have been prevented? (Sectipn 3.3

4. What can be done to fix APT and YUM? (Section 3.4)

3.1 Avenues of Attack

This section examines the attacker’s requirements to laatiacks on APT and YUM. There are three tiers
of vulnerability that allow increasingly damaging attacRde first tier is that the attacker must be able to
impersonate a repository to launch a basic attack (Sectihi)3 Once the attacker is able to impersonate
a repository, the second tier is to be able to sign metadiddayimg more severe attacks (Section 3.1.2). If
an attacker is able to impersonate a repository and signdat@tathen the third tier is to be able to sign
packages, allowing the most severe attacks (Section 3.1.3)

Alternatively, instead of compromising the repository aghing keys, an attacker could simply com-
promise a developer key, allowing the attacker to launcichkst through the normal package update mecha-
nisms in the repository (Section 3.1.4). The feasibilitybfaining the requirements to launch these attacks
is now described.

3.1.1 Impersonate a Repository

The attacks against package managers require an attachawveathe ability to provide traffic on behalf
of a repository. There are three ways this can be done: m#reimiddle (MITM) attacks, control of a
repository, or control of a mirror.

In MITM attacks, the attacker intercepts traffic between seonmunicating users and provides their
own data instead. These attacks are relatively simple tackaf20, 46] and there are toolkits available
that automate the process [16, 40]. When an insecure ptatach as HTTP is used, a MITM attacker is
equivalent to an attacker who can control a repository tnadirect compromise. Using a secure protocol
such as HTTPS can prevent MITM attackers from masqueradiagepository, however with the exception
of Red Hat Enterprise Linux, HTTPS is not widely used.

A repository is typically very similar to a web server andhakis that compromise web servers, such as
software exploits, may allow the attacker to modify cont@mthe repository. Social engineering is another
potential avenue of attack, allowing an attacker to gairtrobof a repository by manipulating the human
administrators in charge of the repository.

Third-party developers often setup their own repositoidegrovide software that is not in the core of a
distribution. An attacker could exploit this common praetby setting up their own repository purporting
to provide third-party software and try to lure users to wsélowever, this only effects the subset of users
who use this software.

Another avenue of attack is for an attacker to obtain corgfah mirror. To evaluate the feasibility
of controlling mirrors of popular distributions, YUM and APnirrors were set up for them. A fictitious
company (Lockdown Hosting) with its own domain, websited &ictitious administrator (Jeremy Martin)
were created to control the mirrors. A dedicated server easdd through The Planeigw. t hepl anet .
com.

Setting up a public mirror for Debian, CentOS, and Fedoralirad acquiring the packages and metadata
and then notifying the distribution maintainers that theromiis online. Debian and CentOS listed the mirror
within a few hours, and Fedora listed the mirror in minutes.

With Fedora, a few minutes after the mirror was officiallytdid, the mirror began receiving requests
from Fedora users. We believe this is the result of most Fedeers using r r or Manager [17]to
dynamically select mirrordv r r or Manager has clients send requests to a central server that farms them
out based upon the client IP, geographic location, couetry, One interesting thing to note is that mirror
administrators can specify an IP address range they wamrte packages to. In fact, targeting a subnet
means that users in that subnet will wsgy that mirror. This allows easy targeting of attacks (to a Hjmec
country or organization) and reduces the number of othdiggarho will consume resources on the mirror.

3.1.2 Metadata Key

While an attacker may be able to impersonate a repositagytay or may not mean that he is able to create
forged packages or metadata on the repository. Some repesitise a private key (called a metadata key)
to sign the root metadata that is published by the repositbtige repository keeps its metadata key offline
or is a mirror of another repository which does all of the signa compromise of the repository may not
imply a compromise of the key. A MITM who does not also posskskey cannot sign metadata.

In YUM and many APT distributions there is no metadata key ampromise. Any attacker with
control of a repository can launch these additional attagksout having to compromise additional keys. If
the repository signs metadata and has its key online, thettacker who has compromised the repository
can forge metadata. Similarly, if an attacker controls adtpiarty repository and lures users into adding the
repository key to their keyring, the users become vulnerabl

One item of interest is that since the root metadata and tratire of the metadata are in separate
files, they are not downloaded and verified atomically. Thesans that in some cases the signature and root
metadata file will not match (for example, as they are updateen in the absence of malicious users. These
false positives may help to mask attacks.

Note that even when the root metadata is signed, an attadiedoes not have the metadata key can still
launch package metadata attacks if they can convince tlositery to host a maliciously crafted package.
This means that developers can trivially launch thesekstac

In cases where the root metadata is unsigned, one may arguié tthe packages are signed, then the
package metadata is protected from tampering. While YUMsdu# sign the root metadata, most YUM
distributions do sign the packages themselves. One mighinges that the package signature is used to
verify the package metadata. This is not the case. The tepp$s trusted to generate accurate metadata
that reflects the contents of the package. This metadat@ishysthe dependency resolver to decide which
packages should be downloaded. Thus, the dependencyaesobxplicitly trusting the repository to pro-
vide accurate information. The only way to be sure that tpesiory provided accurate metadata is to use
the metadata from the downloaded and verified package. Téasathat, in practice, the package signature
is not used to verify the package metadata! As a result, pgcheetadata retrieved from a repository is (at
best) only protected by the secure hash in the root metasdigtaefl using the metadata key in some APT
distributions) and not the developer who packaged the softw

3.1.3 Package Key

In addition to keys used to sign the root repository metadaiene YUM distributions sign the packages
themselves. If the key used to sign packages is comprontisenlan attacker can sign arbitrary packages.
However, it is important to consider what happens when tipedi@ency resolver decides a package that
is unsigned or signed by an untrusted key needs to be irgtalleesolve dependencies. If a user willingly
installs unsigned packages, then the result is equivateatprivate key compromise. With YUM, when a
user tries to install a package that is signed with a key #aot in their keyring, YUM will return an error
if the configuration optiompgkey is not set. Ifgpgkey is set, YUM will look for GPG keys at the URLs
specified (often on the same repository) and ask the usesyiftlant to install these keys in order to verify
the package. So, if an attacker can provide their own key iemiser requests a URL listedgpgkey,
all they need to be able to do is provide the user a packageavgifnature the user cannot verify. The user
will be prompted to add the attacker’s key to their keyring!
In APT distributions and YUM distributions that do not sigagkages, there is no package key to
compromise. In this case, repository and metadata key aomipes imply the ability to launch any attacks
that would otherwise require a package key compromise.

3.1.4 Developer Key

In addition to considering the feasibility of attacks onasfpories, it is important to consider how packages
are legitimately updated on repositories. If an attackerinfroduce malicious content onto a repository
through legitimate channels then they can also launchksttac

To provide an example, the developer's package update ggomfeDebian is described. To update
packages for the popular APT distribution Debian, a dewslqploads a package signed by their private
key to the package archive. If the signature is valid, cpoads to a key in the list of developers, and the
package is correctly formatted, the package file is put irgod of packages that form the daily update. All
of the packages in the daily update have new metadata geddaatthem. The root metadata file is signed
automatically by a single Debian key that all Debian usex®ha their keyring. The daily update is then
pushed to hundreds of mirrors around the world that servaclsgge repositories.

There are several items of interest with this process. ,Riist packaging and update process is fully
automatic. From the description of security practices emtiain Debian site [10], the only thing an attacker
needs to do is compromise a developer’s key to be able todiphadicious packages.

Second, any developer can upload an updated version of akgge This means that you are implicitly
trustingeveryDebian developer’s key even if you don't use the softwarg thaintain. Considering there
are more than 2448 keys listed in the Debian developer dsgabizere are a significant number of keys that
need to be secure for the distribution to remain secure.hBudompounding the problem, there are keys
that are as short as 768 bits and as old as 1993!

In addition to trusting developers who work on core disttidms, it is important to consider third-party
developers. If a user wants to verify third-party softwaeéobe installation, then they need to add the third-
party key to their keyring. Depending on the security meeswmndertaken by the third-party developers,
this private key may be more or less secure than the usetisbdison’s private key. However, it always
represents another avenue of attack.

As a recent attack [38] has shown, it is feasible for packagesitories to be poisoned with malicious
versions of packages. In this attack, an attacker obtamegassword for a developer account. The attacker
used the account to upload a maodified version of the Squiailpackage containing a flaw that allowed a
remote user to execute arbitrary code. Interestingly,éfdbmpromised account had access to the project
website, the attacker would have been able to change the MBI listed for the package and the attack
may have gone unnoticed.

3.2 Attacks
Now that the feasibility of the attackers gaining the neapsaccess to launch these attacks is understood,
it is important to understand if APT and YUM are vulnerablattack.

3.2.1 Slow Retrieval

A simple attack is to allow the client to open a connection theh refuse to send data or send at a very
slow rate. The attacker keeps the connection open for asdsmgpssible. This prevents the client from
installing updates from other repositories. APT and YUM ‘tddéwg or print any useful information to
help an administrator discover the attack has taken platker@han “pausing” when it tries to contact a
repository, there is no output to indicate the problem.

3.2.2 Endless Data

Another attack is to return an endless stream of data to taetavhenever files are requested (an attack
described in other work [42]). This attack has an odd effecyM and APT. Surprisingly, when YUM

is given ar epond. xm file of unlimited size, it exits silently after the filesystasifull with a 1 exit code
— leaving the huge file on disk. Since no information is loggedorinted about the error, this makes
discovering the problem complicated (especially if YUM swia auto-update).

APT is also vulnerable to this attack, but the size of thaeetd file is assumed to fit in a C unsigned
long. This means that APT will willingly download up to 4 GB dé&ta on 32 bit architectures for each file.
If APT is compiled on a 64 bit architecture, then it will halyiry to download files greater than 18,000,000
TB! Interestingly, APT could protect against this type dhak since the metadata in APT provides the data
sizes of the files to be downloaded.

The endless data attack works to prevent clients from gefiackage updates from other repositories.
However, this attack also consumes large amounts of diskespa the client system as well as network
bandwidth and CPU. Exhausting resources, especially gigkes on a client machine can have disastrous
effects. For example, on Fedora and Ubuntu this prevenggriggcorrupts databases, and halts mail deliv-
ery.

The effectiveness of this attack can be mitigated by usingparate filesystem for the cache directory
used by APT or YUM. However, this attack still prevents ugdatrom other package repositories from
being installed.

3.2.3 Replay Old Metadata

Some APT repositories sign the root metadata to preventdangpby an attacker. The signature prevents
an attacker who can not sign the root metadata from subisgtarbitrary metadata. However, it does not
prevent an attacker from replaying old metadata. An attaciay, for example, capture the root metadata
from a date when a vulnerable package was released. At somednithe future, well after the package
has been patched, the attacker may replay his captured ateetadusing clients who request the package to
install the vulnerable version.

In APT, even though the metadata is signed to prevent tandhiere is no protection against replaying
old metadata. APT ignores the date listed in the metadatalfiould be older than the previous file, or
even have a date in the future, and there is no complaintctnA&®T overwrites the existing metadata with
the files it is downloading. This means that unless the usainethe old metadata file manually, they have
no way to check what the previous state of the repository was.

For YUM and APT repositories that do not sign the root metaditere is no need to replay metadata.
An attacker can simply create metadata of their choosing.

3.2.4 Extraneous Dependencies

This attack is launched by providing false dependency infdion for a package the user will install to say
that it also depends on another package. For example, akettean say that every package depends on
some “extraneous” package of their choice.

This attack works on both APT and YUM. Surprisingly, neith®T nor YUM verify that the depen-
dencies in the metadata of the packages they download nfeqiatkage metadata they retrieve from the
repository! The only restriction in the choice of extrangpackage is that if package signatures are checked,
then the package needs to be correctly signed. Even wheatgign are used, this attack can result in new,
vulnerable packages being installed.

3.2.5 Depends on Everything

Another potential attack involves returning package negtadhat makes it look like a requested package
has a huge number of package dependencies. In APT and YUDMf, thkkse packages will be downloaded
before any signatures are checked.

In addition to consuming disk and network resources on tieelthis attack can be used by a malicious
repository to launch an attack on other repositories. Thikcroas repository can advertise a new version
of a package that depends on the entire set of core distibptickages and that the malicious repository
hosts none of the core distribution packages. Assuminglitiet ¢s configured to use multiple repositories,
it will download all the distribution’s packages from thénet repositories.

3.2.6 Unsatisfiable Dependencies

To prevent installation of a package, an attacker can retlist of dependencies which indicate that a pack-
age the user is interested in has unresolvable dependefdiesprevents APT and YUM from installing
the package, while to the user it appears that the repositopackager was in error, rather than it being
a suspected attack. If an extension to YUM is used, YUM witbraipt to install an alternate version of a
package if the desired version is unavailable. This mechamhay allow an attacker to cause a particular
desired (vulnerable) version of a package to be installed.

Note that the attacker need not be able to correctly sign #lokgge of interest. Since packages are
not downloaded until after dependency resolution, thenthell not download the package (or check the
signature).

3.2.7 Provides Everything

Another potential attack involves returning metadata thakes it look like a package resolves a huge
number of virtual dependencies. Any time a package is neededolve a virtual dependency, this package
will be considered. This package’'s metadata can be createaluse it to be installed over other packages
that provide the same virtual dependency.

If there is a real package with the same name as a virtual depey, the real package is always pre-
ferred. This allows an attacker to create a packagepd on their repository that will be preferred over any
of the packages from the core distribution that provide tiritial dependency (such apache). When
there are multiple packages that provide the same virtysm#ency, APT resolves dependencies on virtual
dependencies by choosing the package whose name comefpfiedhetically. YUM chooses the package
whose name has the shortest length. Thus, an attacker e eréle namea. deb or a. r pmthat will
be preferred over all other packages.

This attack can be used by attackers in different ways. Ikaae signatures are used, then an attacker
can use this as another method to install extraneous patkBggome situations this is more effective than
the extraneous dependencies attack because this will taisspackage installation for dependencies of
packages hosted on other repositories. If package siggzafuie not used or the attacker has compromised
the package signing key, then an attacker can use this tcshanaticious package of theirs be installed more
frequently. Users who want to install other software wilk@dhe malicious package installed as well. This
attack can also be used to launch depends-on-everythimckatif the package that provides everything has
a huge dependency list.

3.2.8 Use Revoked Keys

One common need in any system that uses public key cryptiograpa mechanism for revoking keys.
Package managers are no exception. There are two issuassidero the number of keys in the system and
the method of revocation.

Unfortunately the popular APT and YUM distributions thatsigning use few keys to sign everything.
In Debian and Ubuntu, all of the root metadata files are sidpyeithe same key. In Fedora every package is
signed by the same key. There is ho way to retroactively revokst in a signed item, without effectively
revoking trust in all items signed by that key.

10

The typical mechanism for revoking a key is from a notificatio the user that a key should be revoked
in an ad hoc, out-of-band manner [8, 21, 23]. For exampleh swatification might take the form of a
security announcement via email from an organization liEdRT [8, 21]. The user then manually removes
the key from their keyring.

Recall that the package management system is designedateymtkages rapidly and often automati-
cally. This is at odds with the comparatively slow procesmahual key revocation. Key revocation creates
a race between the revoker (who is trying to remove trusténctmpromised key) and a malicious party
(who may be trying to utilize the key before it is revoked)n& key revocation is a slow manual process
while updating packages is rapid, this gives maliciousigpga@ strong advantage.

3.2.9 Escalation of Privilege

In order to verify package signatures, YUM uses a set of pll#ys which are considered trusted keys.
To add a new public key for package verification, users addelyeo their keyring. However, checking if
a package’s signing key is in a user’s keyring is a true/fglsestion — it is either there or it is not. This
means that a user who wants to verify Apache project packagbshe Apache project’s public key will
also implicitly (and silently) trust gcc RPM signed by their key.

YUM has a mechanism to try to mitigate these types of attatksers can specify that a repository
should be trusted for a specific package or packages usirgpttigyuration option ncl udepkgs. Simi-
larly, a repository can be restricted from being used foc#igepackages with thexcl ude configuration
option. However, this doesn'’t prevent third party devetspssociated with one repository from infecting
users with malicious versions of core packages if they cathgir malicious packages on other repositories
the user trusts. This is because the keys in the user’s kethrat are used to verify packages are not tied to
a repository or a set of packages. This also requires demedap set up their own third party repositories if
they want to provide a greater degree of trust to their users.

The existence of escalation of privilege attacks create®lalgm for administrators and users. Should
a user who knows the correct version of Apache’s public keyaihthe key in their keyring if they aren’t
planning on installing Apache soon? If they don’'t add the, kbgn they will need to validate the key is
correct if they decide to install Apache later (an admiaisie pain). If the key is added, then a compromise
of the Apache key can impact the security of the system evepathe packages aren'’t installed.

3.3 Lessons Learned

The previous section pointed out attacks and suggestetis@un a one-off manner. This section draws
correlations between vulnerabilities. If there are comatities between programming and design errors,
then perhaps system developers can avoid these issuesttdtiesalescribed throughout this section (de-
picted in Figure 1) can be attributed to failures to followett security rules.

The first rule of package management security is don't thest¢pository. This means scrutinizing the
data returned by the repository and verifying it obeys ardata transfer protocol rules. Failure to cor-
rectly check the returned data leads to vulnerabilitieh wie replay of old metadata. Insufficient protocol
examination leads to vulnerabilities with endless datasiow retrievals.

The trusted entity with the most information should be the who signs is the second rule of package
management security. Packages (and metadata) shouldrigel dig the entity with the most knowledge.
This implies that package metadata should be signed byajes instead of repositories (since the repos-
itory has no idea if the package metadata is correct). Thesiswiolated because package metadata isn't
verified using the package signer’s key which leads to agtaslolving forging package metadata to change
the dependencies and provides. This also argues agairisthibution key automatically signing developer
uploaded packages.

11

The final rule of package management security is don't ihstatrusted packages. This means that
a central point of focus should be a built-in revocation nagism to reduce the vulnerability of users to
key compromises. Another important consideration for @néing the installation of untrusted packages is
preventing developers of one package from presenting imasicversions of another package (escalation
of privilege). Unfortunately, neither APT nor YUM has a meaaism for key revocation built-in and the
mechanisms to restrict trust can be circumvented.

3.4 Securing APT and YUM

There are several simple actions that will mitigate theatiffeness of many of the attacks:

1. Validate repository communicatiorBy checking that file sizes and data rates are reasonable, APT
and YUM could limit the effectiveness of endless data and skdrieval attacks.

2. Track signature timesAPT (and YUM if it adds metadata signing) should refuse toept®lder
versions of signed data. This would limit the effectivenetthe replay old metadata attack.

3. Use HTTPSHTTPS makes it more difficult for an attacker to launch anyhefattacks because a man
in the middle will have a harder time masquerading as thesitpy.

4. Guard mirrors. Delegating control of a mirror for a distribution should bedted with utmost caution.
This will help to prevent most of the attacks because it wallarder for an attacker to obtain the
ability to impersonate the repository.

5. Sign metadata and package&igning both metadata and packages makes it more difficulario
attacker to launch most types of attacks.

6. Check metadata is correcOnce APT or YUM has decided to install a package, it shouldrdoad
the package and verify its signature and that the metadatehesthe metadata provided by the
repository. This will help to prevent the depends on evengilattack and extraneous depends attacks
when the attacker cannot correctly sign the package.

These measures will increase the difficulty in launching ynigpes of attacks. However, within the
architectures of APT and YUM there is no way to fix key revomatiescalation of privilege, provides
everything, and unsatisfiable dependencies attacks. Téamsithat the security architectures of APT and
YUM are fundamentally inadequate to address these issues.

4 Principles of Secure Package Management

The rules of package management security describe how td sgourity errors in package management.
However, they do not describe how to provide the necessactiinality to provide security. This section
discusses three principles for secure package managenatmrovide this functionality. Then, examples
of how these principles should be applied in practice arergiv

4.1 Design Principles

Selective trust delegation allows a user to trust anothersisignature only for specific packages. This is
a means by which a user can prevent escalation of privildgekat by delegating the minimum amount of
trust necessary. A hierarchical model is used where an esdnugy trust a project leader or distributor,
who in turn trusts individual developers. This is fundanaéigtdifferent from having the distributor sign a

12

package simply because the developer signed it. This isibedhe distributor never signs the package, but
instead signals trust in the individual developer’s keyisTirovides a natural mechanism for key revocation
and also removes the necessity to revoke a key to removdrtragiackage.

Having customized repository views means that each uses*sedifferent repository, which is actually
an amalgamation of package metadata across all of the tepesithey are using. However, only package
metadata that the user trusts is included. Package metaoataintrusted users cannot impact the security
of the package manager. This allows repository admin@sato permit users to freely add their own
packages without compromising the security of other usBepository administrators then only need to
worry about traditional problems for servers, such as priveg attackers from gaining root on the repository
and disk space usage of individual users, instead of havibg toncerned with the validity of the contents
of the packages or the package metadata.

Contrary to popular belief, there are subtle ways that pgekapositories are trusted by clients running
modern package repository software. For example, paclagmesitories are implicitly trusted to allow file
downloads as well as providing accurate and timely metaatadat the packages on the repository. Unfortu-
nately, in many cases a man-in-the-middle has the sameagagsmptions. By treating all interactions with
the repository (and everyone in between) as though they idineaw untrusted entity, package managers can
avoid these attacks.

4.2 Concepts and Examples

Selective delegation means that users can choose to detegsitto other users in very fine-grained ways.
As a simple example, if Alice knows Bob maintains theo package, Alice can state that they will trust
f 00 packages that are signed by Bob. This means that Alice wiltnust Bob'’s signature of a package
bar.

An example of how this might be used in practice is thatftbe project itself may have a key that is
used to manage the project. Alice can trustftlw® project to know whichf oo packages are valid. The
f 0o project can trust the current developers on the project tawkwhichf oo packages are valid. The
developers can sighoo packages with their personal private key.

At first glance this may seem the same as having a single piaggdor signing, but there are several
important differences. First of all, the project key is onised when project membership changes and so
can be kept off-line. Second, no developer needs access frdfect’s private key. As developers come
and go there is no need to change the project key used to degses. Third, revocation of a developer’s
key is as easy as the project key removing delegation to thatloper. End users need not even be aware
that the project's membership has changed. Fourth, tristiafidual packages can also be revoked without
revoking the signing key.

Not every user needs to make their own trust delegationidesisDistribution maintainers would likely
selectively delegate trust to projects, who would furthededate trust to developers. They would request that
all of their users either use their delegations or delegast to them for the packages that the distribution
manages.

Another example of the usefulness of selective delegationarking a package as untrusted. There are
several groups that monitor software vulnerabilities [B], 22nce a vulnerability is uncovered, they notify
users that affected packages are untrustworthy. Insteag,could ask users to trust them to know which
packages to reject. Users can delegate trust to this grokipoie which packages are untrustworthy. As a
result, the user's computer will refuse to install packathes are marked as having security vulnerabilities
even if other users mark them as trusted.

A related principle to selective delegation is custom répogviews. Custom repository views means
that different users who use the same repository may sexreliff packages. For example, perhaps Alice
trusts Bob to know about theoo packages, while Charlie does not. Alice will have Bob&o packages

13

in her view of the packages in the repository and Charlie natl

Custom repository views extend to multiple repositoriesus&r may access packages and metadata on
multiple repositories. This information is amalgamatedaton a single, customized repository view with
only the data that the user trusts. If some of the repos#@ie down or have been compromised, the user
will still be able to install packages from valid sources.

In providing custom repository views, it is important to keteack of the latest version of the files that
have been retrieved. The user should never accept an oldgovef a file it has seen.

It is important to treat data coming from the repository atrugied. There are many subtle issues
that are important to consider. For example, dependenojutesn is performed using package metadata.
This information needs to be validated so that maliciousbdified metadata cannot change the behavior
of package dependency resolution. Also, clients retrieata éfom repositories to install package updates
including security updates. If a client is using multiplpositories, it should not be possible for one of the
repositories to prevent the client from installing paclaffem others.

5 Stork

This section describes the security architecture of a gprkaanager Stork which follows the principles for
secure package management. A discussion of Stork’s vililiigrdo attack is presented.

Stork [6] is a package management system designed to fixceinairigs in APT and YUM. Stork has
several non-security advantages over existing packagageament systems: it provides secure and efficient
inter-VM package sharing on the same physical machine [gijpvides centralized package management
that allows users to determine which packages should balggston their clients without configuring each
client individually [35]; it allows multiple physical madtes to download the same package efficiently; and
it ensures that package updates are propagated to the VMsmels fashion. Stork is also unique from a
development standpoint [7]. More information about Staak be found in other sources [6, 7, 28, 35].

5.1 Basic Security Architecture in Stork

Stork mitigates the effectiveness of attacks on other ggekaanagers by following the three design princi-
ples for package management security: selective trusgaliéd®, customized repository views, and explic-
itly treating the repository as untrusted.

This section begins with a description of a novel mechansprovide selective trust delegation called
a trusted packages file. Then follows a description of sigeatvrappers (a signature with additional fields)
that provide resilience against replay attacks to suppmtomized repository views. Next, Stork’s reposi-
tory communication (which gathers the trusted packages ditel package metadata) is described. Finally,
the use of self-certifying path names to support both cuetnrepository views and validate repository
communication is described.

5.1.1 Trusted Packages

The primary architectural security difference betweenlSémd existing package managers is the addition
of a new type of file called &usted packagefle (or TP file). TP files are used to provide selective trust
delegation and also aid in supporting customize repositi@wys.

The user’s trusted packages file indicates which packagesstr considers valid. The TP file does not
cause those packages to be installed, but instead indicast$hat the packages have valid contents and are
candidates for installation. For the distributor of a paykdt is common for them to have multiple versions
of the same package listed in their TP file so that users caalliogder (perhaps more stable) versions of
the package.

14

<?xm version="1.0" encodi ng="1SO 8859-1" standal one="yes" ?>
<TRUSTEDPACKACES>

<!-- Refuse any packages the CERT user says are bad -->

<USER PATTERN="#" USERNAME="CERT" PUBLI CKEY="MrwwDQYJK+sdl kj ASFDG sdf GISDFGIAsd2qg34_45. . . sdf SIGs4pADFgsVBAWEAAQ' ACTI ON=" DENY"/ >

<l-- Trust sone packages that the user specifically allows -->

<FI LE PATTERN="emacs- 2. 2-5.i 386. r pnt HASH="aed4959915ad09a2b02f 384d140c4626b0eba732" ACTI ON="ALLOW />
<FI LE PATTERN="f oobar- 1. 01.i 386. rpnt HASH="16b6d22332963d54€0a034c11376a2066005c470" ACTI ON="ALLOW />
<FI LE PATTERN="f oobar-1.0.i 386.rpnt HASH="3945f d48567738a28374c3b23847309634ee37fd" ACTI ON="ALLOW />
<FI LE PATTERN="si npl e-1.0.tar.gz" HASH="23434850ba2934¢39485d293403e3293510f d341" ACTI ON="ALLOW / >

<!-- Trust the apache user for apache packages -->
<USER PATTERN="apache*" PROVI DES="apachex*, httpd" USERNAME="apache" PUBLI CKEY="MrwnwDQYJKt dd_. .. 4bi 1w406JMCAWEAAQ' ACTI ON="ALLOW />

<!-- Trust the 'stork’ user for stork and arizona packages -->
<USER PATTERN="st or k*, ari zona*" PROVI DES="st or k*, ari zona*" USERNAME="st or k" PUBLI CKEY="MrwnDQYJKI h. .. 3DMCAWEAAQ" ACTI ON="ALLOW / >

</ TRUSTEDPACKAGES>

Figure 2: Example TP File. This file specifies which packages and users are trusted. gQaudgages
allowed by a TP file may be installed. FILE actions are usedust tindividual packages. USER actions
allow hierarchical trust by specifying a user whose TP filmdtuded.

A trusted packages file allows a user to delegate trust anclfgpedividual package files that they
trust. In order to trust a package, the package name and ginedfidhe package’s metadata are added to
the trusted packages fil&his is not the same as adding the hash of the package to thiedrpackages file
as the metadata may now be verified independently of the gac&ince the package metadata contains a
secure hash of the package, the package is still proteciedtdmpering.

To delegate trust to a user, the user's name and public kegpa@fied along with the packages and
dependencies they are allowed to provide. This informasaudded to the trusted packages file. Users can
be trusted to know which packages that meet these spedfisatd install (usingALLOW, which packages
not to install (usindENY), or both (usingANY).

Lines in a trusted packages file are processed in the ordgratieeseen in the file. The first rule that
a package matches classifies the package as either avddalitstallation (allowed) or removes it from
consideration (denied). Any packages that are unmatchedwomatically rejected (there is an implicit
<FI LE PATTERN="*" ACTI ON="DENY"/ > atthe end). Thus, the order of lines in a TP file is relevant
when determining which packages are allowed to be candidaténstallation.

Figure 2 shows a TP file without a signature wrapper. This Té& rijects any packages that the
CERT user rejects. It specifically allovesracs- 2. 2- 5. i 386. r pm several versions dfoobar , and
cust omapp- 1. 0. t ar. gz to be installed if their metadata matches the secure hashl.lift also trusts
the Apache user for packages nanagéiche+ . Additionally, the shown TP file indicates that the TP file of
the Stork user will be used to determine trust of any packagese name starts wit or k orari zona.

5.1.2 Signature Wrappers

Stork uses signature wrappers to support customized teposiews. Signature wrappers protect TP files
and the repository’s root metadata from tampering, replajdfiles, and a party permanently returning the
same version of a file. Signature wrappers contain the tamgst expiration time, signature, and a hash of
the public key that was used to generate the signature. estamp prevents older versions of files from
being considered over newer versions. The expiration timessold files from being used indefinitely. The
signature protects the file from tampering. The public kégétuded for reasons explained in Section 5.1.4.

The timestamp specifies when the file was created. By defhaltimestamp is generated from the time
in seconds since the epoch. Clients track the latest veddieach file they have seen and will never accept
an older version, thus preventing replay of old files.

15

Files can also be created with a negative timestamp. If adideshnegative timestamp, it means that the
signing key should be treated as invalid. Any client with a filat has a negative timestamp will reject any
file signed by the same key downloaded thereafter regardfegsiestamp. This is an effective way for a
party to indicate that a key has been compromised and thðe signature should not be trusted.

The signature wrapper also has an expiration time. Thisaslad against the time on the local system
where the file is used. If the current number of seconds simeepoch is greater than the expiration time,
then the file is regarded as invalid.

The order of the timestamp and expiration time comparisoag be relevant. For example, suppose
that there are two files: an older file that has an expiratime in the future and a newer file that has already
expired. If the expiration comparison is done first, thendluer file will be used because the newer file
has expired. If the expiration comparison is done after ithestamp comparison, neither file is valid file
because the newest version has an expiration time in the past

Stork performs the timestamp comparison first so that thevitle the newest timestamp will always be
used. This helps to prevent replay of old metadata becaess wil never accept older files once they have
seen a newer file, no matter the situation.

The expiration time mechanism requires that clients hawghty synchronized clocks. If this is a
problem, a client may choose to check the signature and kegstamp ordering but disable expiration
checking. This allows users to trade convenience for sgc(as there is no protection against an attacker
continuously returning the same version of a signed file).

The signature is used to protect the file from tampering. Vec®the expiration time and timestamp as
well as the embedded contents.

Stork uses signature wrappers to create the customizedit@yoview that a client sees. This is the
set of good package metadata and TP files from all reposttiie user references, including good infor-
mation previously downloaded from the repositories. Pgekaetadata is checked for validity (described
in Section 5.1.4) and newer versions of files are selecteé. résulting valid package metadata forms the
customized repository view.

5.1.3 Communicating with Repositories

Instead of a simply opening a repository connection for filwload and waiting for download completion,
Stork monitors the connection. If the connection is notgfaming data above a user-configurable minimum
rate, the repository is treated as dead and the connectadrorsed. Stork also restricts the amount of data
downloaded from a repository. If a repository responds witlte than the expected amount of data or more
than a user configurable maximum then Stork drops the caonect

Stork supports multiple data transfer protocols, inclgddT TPS.

5.1.4 Self-certifying path names

Along with signatures, Stork uses self-certifying path BarfR6] to detect tampering. These identifiers are
present in the URLSs or file names of TP files, packages, andagacketadata. This allows an entity, such
as a repository, to be able to check the validity of a file.

A package or package metadata is stored on a repository atlacOaining its secure hash. All
packages and package metadata are considered to be imeufedy}t user can verify that a file has not
been tampered with by checking the secure hash of the redrigata. This allows a repository to check that
uploaded packages and package metadata is valid. Thi®igsdd by the client to validate that information
retrieved from a repository is correct.

16

TP files have public keys embedded in their names indtdasing an embedded public key, a repository
can verify the file is unmodified by checking that the TP file asrectly signed and that the public key in
the secure identifier corresponds to the private key thaesighe file.

Since TP files may be changed by the user, there may be cases mhéiple valid copies of a TP
file are uploaded to a Stork repository. In this case, thekStpository keeps the version with the latest
timestamp. If any of the files specify that the key should weked (via a negative timestamp), then the file
with the negative timestamp will be retained.

Having a Stork repository keep the newest version of a filmiggtimization that prevents attackers
from replaying old copies of files. However, a repository @ trusted or relied on to perform this action.
Recall that even if a repository colludes with an attackesdoept old files, Stork’s use of expiration dates
limits the effectiveness of replaying old TP files to a client

5.2 Mitigating Vulnerabilities in Stork

By following the principles for secure package managenm@tark has tried to mitigate the vulnerabilities
present in APT and YUM. This section revisits these vulniiteds to examine their effectiveness on Stork.

5.2.1 Slow Retrieval

Communication monitoring by the client prevents slow comioations from “pausing” the package man-
ager. If a connection is too slow, the transfer is abortedthadepository is treated as down.

5.2.2 Endless Data

Stork protects against endless data attacks. In some c&eskaclient does not know the correct size of
data it is downloading. Two such cases are when an attackérot® a repository (and can arbitrarily set
the size) or when retrieving the initial root metadata. Ehare maximum file sizes for every type of file
downloaded as well as a maximum size for a repository as aewvhol

In the case of an uncompromised repository, all files othen the root metadata are of a known size.
Stork verifies that the files it downloads do not exceed ttzat. si

5.2.3 Replay Old Metadata

Since the root metadata and TP files have a signature wrappattacker cannot replay older metadata than
the client has seen. Also, the expiration time prevents fiitga being used indefinitely. In fact, repository
metadata will only be used for the short time frame beforexjgires. Similarly, user TP files have an
expiration time determined by the creator that preventsitiem being used indefinitely.

5.2.4 Extraneous Dependencies

This attack cannot be launched by an attacker who comprsraisgpository since the developer’s signature
protects the package metadata. The key difference betweedtork client and existing package managers
is that, with Stork, theroject or developer’s kegrotects the package metadata, notrdpository’s key

10n some filesystems, keys with many bits are too long to be ddgukin the file names. In this case the public key is placed
in the signature wrapper and a secure hash of the key is piated URL

17

5.2.5 Depends on Everything

Similar to extraneous dependencies, this attack cannoaulmeched by an attacker who compromises a
repository since the developer’s signature protects tbhkgge metadata.

5.2.6 Unsatisfiable Dependencies

This reason why this attack is prevented is the same as extnardependencies. A repository compromise
does not imply the ability to forge package metadata.

5.2.7 Provides Everything

This attack cannot be launched by an attacker who comprsraisgpository since the developer’s signature
protects the package metadata. The other consideratiohather or not a malicious developer can cause
their package to be installed when not requested using tifsiska In Stork a user can restrict the provides
that will be allowed by package metadata signed by a speaéc to prevent this attack.

5.2.8 Use Revoked Keys

Delegation using a trusted packages file provides a mecahdvistrust revocation. Assuming that project
keys are used only to change the list of developers trusts@ytoproject files, the most likely avenue for
compromise is an individual developer key. These can bekesl/individually by the project key without
involving other users. If a project key is compromised, ated packages file with a negative timestamp can
be created so that users will not continue to trust the comimed key.

Unlike APT and YUM, the speed of revocation in Stork is the saam the speed of trust. This means
that individuals that revoke trust are not at a disadvantsgmuse of the inherent speed of the mechanism
used to do so.

5.2.9 Escalation of Privilege

Trusted packages files allow very fine-grained trust decssio be delegated to other users. This means
that if a user trusts Apache to know about the validityapfache packages but never installs apache
package, an Apache key compromise will not compromise #egurity. This removes the administra-
tor's dilemma about whether to add keys they can verify winenpackage may not be needed (from Sec-
tion 3.2.9). The simple and secure answer for Stork usecstigi$t all of the project keys that a user knows
are valid and to trust them only for packages provided by phaject. By using selective trust delegation,
only systems that install a given project’s packages arislatfrthat project’s key is compromised.

6 Related Work

There are a large number of package managers for Linux iimguslaktool [37], pacman [4], YaST [45],
urpmi [41], and Portage [33]. These package managers have dianilar to those in APT and YUM.

A popular BSD package managempikg_add [5] with f r eebsd- updat e [32] also in usepkg_add
relies on users checking that detached signatures matgrdhigled tarball.f r eebsd- updat e has im-
proved security and signs root metadata but does not sid@pas or use HTTPS making it similar to APT
from a security standpoint.

Other systems make use shared filesystems for softwareyteghd [1, 25, 18]. While Safari [18] does
support package signatures, in general these systems dold@iss the larger problem of key distribution,
revocation, or trust delegation.

18

There are a variety of ways to update and install software atam operating systems besides package
managers. There are software update systems [19, 24]nsy$tat ensure the authenticity and integrity of
software (including SFS-RO [26], SUNDR [27], Deployme [38hd Self-Signed Executables [44]), soft-
ware installers [22, 43], and code signing certificates Thlese systems do not support selective delegation
or protect dependency information. They are meant for ciasedich every user knows the organization
who is supposed to be distributing each piece of new softaadethere are no software dependencies —
unrealistic requirements for many scenarios.

7 Conclusion

This paper presents nine feasible attacks on APT and YUMbitinfately many of the flaws that make these
attacks viable are architectural in nature so cannot b&dasid. This work provides a security architecture
that demonstrates how to avoid these vulnerabilities. Airgepackage manager Stork was built upon this
security architecture. Stork is analyzed and shown to bestdio the attacks that are feasible on APT and
YUM. Stork has been in use for four years and has servicedt@len million clients.

References

[1] Siddhartha Annapureddy, Michael J. Freedman, and Disladieéres. Shark: Scaling File Servers via Cooperativeh®ac InProc. 2nd
NSDI, Boston, MA, May 2005.

[2] Debian APT tool ported to RedHat Linukt t p: / / www. apt - get . or g/ .
[8] APT-RPM.http://apt-rpmorg/.
[4] Arch Linux (Don't Panic) Installation Guident t p: / / www. ar chl i nux. or g/ st ati ¢/ docs/arch-install - guide.txt.

[5] Installing Applications: Packages and Ports.t p: / / www. f r eebsd. or g/ doc/ en_US. | SO8859- 1/ books/ handbook/ ports.
htni .

[6] Justin Cappos, Scott Baker, Jeremy Plichta, Duy Nyudason Hardies, Matt Borgard, Jeffry Johnston, and Johmtdart Stork: Package
Management for Distributed VM Environments. Pmoc. 21th Systems Administration Conference (LISA, 'DdJlas, TX, 2007.

[7] Justin Cappos and John Hartman. Why It Is Hard to Build ag-Bunning Service on Planetlab. Pnoc. of the 2nd Workshop on Real, Large
Distributed Systemsan Francisco, CA, Dec 2005.

[8] CERT.http://ww. cert.org/.

[9] Introduction to Code Signinghtt p: // nedn2. mi crosoft. com en-us/|ibrary/ me537361. aspx.
[10] Debian Developer's Referenckt t p: / / www. debi an. or g/ doc/ packagi ng- manual s/ devel oper s- ref erence/ .
[11] Debian - Wikipedia, the free encyclopediat t p: / / en. wi ki pedi a. or g/ wi ki / Debi an.
[12] debsigs - What is debsight t p: / /1 i nux. about . com cs/ | i nux101/ g/ debsi gs. ht m

[13] DistroWatch.com: Editorial: How Popular is a Distrtmn? http://di strowat ch. coni weekl y. php?i ssue=20070827#
feature.

[14] Debian —dpkght t p: / / packages. debi an. or g/ st abl e/ base/ dpkg.

[15] man dpkg-sightt p: // pwet . fr/ man/ | i nux/ comrandes/ dpkgsi g.

[16] dsniff. htt p: / / nonkey. or g/ ~dugsong/ dsni ff/.

[17] Infrastructure/Mirroring — Fedora Project Wikit t p: / / f edor aproj ect . org/ wi ki /I nfrastructure/Mrroring.

[18] Bill Fithen, Steve Kalinowski, Jeff Carpenter, and Jadkel. Infrastructure: A Prerequisite for Effective Setgu In Proc. 11th Systems
Administration Conference (LISA '98)ages 11-26, Boston, MA, Dec 1998.

19

[19]

[20]

[21]
[22]
(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]
(32
(33]

(34]
[35]
(36]
(37
(38]

[39]
[40]
[41]
[42]

[43]
[44]

[45]
[46]

[47]

Christos Gkantsidis, Thomas Karagiannis, and MilambiC. Planet scale software updates.SiGCOMM '06: Proceedings of the 2006
conference on Applications, technologies, architectuagsl protocols for computer communicatiopages 423—-434, New York, NY, USA,
2006. ACM.

A. Godber and P. Dasgupta. Countering rogues in wisetetworks. 2003 International Conference on Parallel Processing Whdps
Oct 2003.

GovCertUK.ht t p: / / ww. govcert uk. gov. uk/ .
InstallShield — Installation Tooht t p: / / www. macr ovi si on. conf products/installation/installshield. htm

MMi Public Service Announcement — Malicious Instal®ource Warninght t p: / / www. nodnyi f one. cont f or uns/ showt hr ead.
php?t =24323.

Apple — Software Updatent t p: / / www. appl e. conf sof t war eupdat e/ .

Kenneth Manheimer, Barry A. Warsaw, Stephen N. Clarid ®alter Rowe. The Depot: A Framework for Sharing Softwargtdllation
Across Organizational and UNIX Platform BoundariesPhoc. 11th Systems Administration Conference (LISA '88)es 37-46, Colorado
Springs, CO, Oct 1990.

David Maziéres, Michael Kaminsky, M. Frans Kaashoakd Emmett Witchel. Separating key management from fileesystecurity. In
Proc. 17th SOSfpages 124-139, Kiawah Island Resort, SC, Dec 1999.

David Maziéres and Dennis Shasha. Building securesfiltems out of byzantine storage. RODC '02: Proceedings of the twenty-first
annual symposium on Principles of distributed computjrages 108-117, New York, NY, USA, 2002. ACM.

Steve Muir, Larry Peterson, Marc Fiuczynski, Justirp@as, and John Hartman. Proper: Privileged Operations iirtaalised System
Environment. InProc. USENIX '05Anaheim, CA, Apr 2005.

Netcraft: Strong growth for Debiarht t p: / / news. net craft. com ar chi ves/ 2005/ 12/ 05/ st r ong_gr owt h_f or _debi an.
htni .

Kyle Oppenheim and Patrick McCormick. Deployme: TadlsmPackage Management and Deployment SystemPrdic. 14th Systems
Administration Conference (LISA '0Q)ages 187-196, New Orleans, LA, Dec 2000.

Re: Differences of Debian vs. the Other Guis$.t p: / /1 i st s. debi an. or g/ debi an- devel / 1998/ 06/ nsg00128. ht i .
Colin Percival. An Automated Binary Security Updatesm for FreeBSD. iBSDCon '03 pages 29-34, San Mateo, CA, Sep 2003.

‘[gentoo-security] The state of ebuild signing in pme’ - MARC. http:// marc.info/?l =gent oo- security&nmr
105073449619892&w=2.

RPM Package Manageht t p: / / www. r pm or g/ .

Justin Samuel, Jeremy Plichta, and Justin Cappos.ré&ieet Package Management Using Stdf&.appear in ;login; Feb 2008.
SecureApt - Debian Wikiht t p: / / wi ki . debi an. or g/ Secur eApt .

Slackware Package Managemet.t p: / / www. sl acksite. cont sl ackwar e/ packages. ht m .

SquirrelMail Repository Poisoned with Critical flaw. http://ww. besker m ng. com comment ary/ 2007/ 12/ 19/ 313/
Squi rrel Mai | _Reposi tory_Poi sonedwith.Critical flaw.

Stork.htt p: // www. cs. ari zona. edu/ st or k.
RSA Alert: New Universal Man-in-the-Middle PhishingtiDiscovered.ht t p: / / www. r sa. conl press.r el ease. aspx?i d=7667.
URPMIL. htt p: // www. ur pmi . org/ .

Wietse Venema. Murphy’s law and computer security.SBYM’'96: Proceedings of the 6th conference on USENIX Sgd@ymposium,
Focusing on Applications of Cryptographyages 19-19, Berkeley, CA, USA, 1996. USENIX Association.

Software Packaging and Installation Authoring Toolltris, Inc. htt p: / / www. wi se. coni .

Glenn Wurster and P.C. van Oorschot. Self-Signed Bades: Restricting Replacement of Program Binaries byadeg. In2nd USENIX
Workshop on Hot Topics in Securigoston, MA, Aug 2007.

YaST - openSuSEnt t p: / / en. opensuse. or g/ YaST.

Lihua Yuan, K. Kant, P. Mohapatra, and Chen-Nee ChuatX:DA Peer-to-Peer Antidote for DNS Cache Poisoning Attadks2006 IEEE
International Conference on Communicatipdan 2006.

Yum: Yellow Dog Updater Modifiedht t p: / /| i nux. duke. edu/ proj ect s/ yum .

20

